
Time-Window Sequential Analysis: An Introduction for Pediatric
Psychologists

Jill MacLaren Chorney,1,2 PHD, Abbe Marrs Garcia,3,4 PHD, Kristoffer S. Berlin,5 PHD,

Roger Bakeman,6 PHD, and Zeev N. Kain,7,8 PHD
1Department of Anesthesiology, Dalhousie University, 2Division of Pediatric Anaesthesia and Centre for

Pediatric Pain Research, IWK Health Centre, 3Department of Psychiatry and Human Behavior, Brown Medical

School, 4Division of Child and Family Psychiatry, Rhode Island Hospital, 5Department of Psychology,

Ohio University, 6Department of Psychology, Georgia State University, 7Department of Anesthesiology and

Perioperative Care, University of California, Irvine, and 8Department of Pediatrics, Children’s Hospital of

Orange County, University of California, Irvine

All correspondence concerning this article should be addressed to Jill Chorney, PhD, Centre for Pediatric

Pain Research, 8th Floor (South), IWK Health Centre, 5850/5980 University Ave, PO Box 9700, Halifax,

Nova Scotia, B3K 6R8, Canada. E-mail: jill.chorney@dal.ca

Received June 24, 2009; revisions received February 23, 2010; accepted March 3, 2010

Objective Pediatric psychologists are often interested in interactions among individuals (e.g., doctors and

patients, parents and children). Most research examining the nature of these interactions has used correla-

tional analyses. Sequential analysis provides greater detail on contingencies during interactions and the

way that interactions play out over time. The purpose of this article is to offer a non-technical introduc-

tion to sequential analyses for pediatric psychologists. Methods A more recent derivation of the basic

method, called time-window sequential analysis, is introduced and distinguished from other forms of

sequential analysis. Results A step-by-step pediatric psychology example of time-window sequential

analysis is provided and the integration of sequential analysis with traditional statistical methods is dis-

cussed. An example of physician–child interaction during anesthesia induction is used to illustrate the

technique. Conclusion Sequential analysis is a technique that is useful to pediatric psychologists who

are interested in contingencies among data collected over time.

Key words methodology; sequential analysis.

Sequential analytic techniques provide pediatric psycholo-

gists with a tool to answer a host of questions about

interactions among children, parents, medical personnel,

and others. Are adolescents more likely to disclose

risk behaviors in a clinic setting following physician

empathic statements than they are at other times in the

interaction with the physician? Are children’s state-

ments about pain more likely to occur after parent

states maturity demands than after other types of parent

statements? Are children with feeding difficulties more

likely to put non-preferred foods in their mouth following

direct neutral request from parent than following other

parent behaviors? Each question is relevant to pediatric

psychologists and each also has the potential for the exam-

ination of sequential associations among behaviors of

interest.

The technology and methods for conducting sequen-

tial analyses have evolved over time, and the purpose

of this article is to offer a non-technical introduction

to sequential analyses for pediatric psychologists.

Specifically this article will provide an introduction to a

recent derivation of the basic method, called time-window

sequential analysis. Time-window sequential analysis will

be distinguished from other forms of sequential analysis

and a step-by-step pediatric psychology-relevant example

will be provided.
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It should be acknowledged that methods other than

sequential analysis might illuminate interpersonal interac-

tions. For example, frequency counts of specified behaviors

could be examined using the appropriate type of correla-

tional analyses (Karazsia & van Dulmen, 2009) or changes

in mean levels of specified behaviors could be compared

pre- and post-intervention. Correlational and mean-level

analyses are valuable methods in the pediatric psycholo-

gists’ armamentarium of statistical techniques, but neither

of them addresses the temporal contingency between par-

ticular adult and child behaviors, which is one of the key

strengths of sequential analysis. Information about the

contingencies that govern the behavior of children and

adolescents with medical issues is a powerful tool and

has clear implications for shaping interventions with

these youth, families, and others involved in their lives

and care.

Overview of Sequential Data Coding and
Analytic Techniques

The term sequential analysis generally refers to a group of

techniques that identify patterns of behaviors and examine

contingencies among data collected over time (Bakeman &

Gottman, 1997). Although different sequential analytic

techniques have the same underlying analytic principles,

it is conceptually helpful to differentiate the types of data

and research questions that are appropriate for each

technique.

Event sequential data coding

Event sequential data coding is the most simplified form of

observational coding. In this type of data collection, behav-

iors of interest are coded from transcripts, videotapes, or

audiotapes using a single set of codes that are mutually

exclusive (i.e., only one code can be associated with a par-

ticular event) and exhaustive (i.e., there is some code for

every behavior (Bakeman & Gottman, 1997; Bakeman &

Quera, 1995, 2009). This type of coding results in a single

stream (otherwise known as string or sequence) of codes.

A hypothetical example of this type of data is shown in

Figure 1a. In this example, physician reassurance, physi-

cian empathic touch (i.e., holding the child’s hand), and

child cry are the coded behaviors.

Event sequential coding has the strength of requiring

little technology to collect, but strips information on

timing of behaviors from the data thus making representa-

tions of behaviors that have meaningful durations (e.g.,

crying) problematic. For example, in Figure 1a, if the

third event (child cry) lasted for 5 s and the sixth event

(also child cry) lasted for 5 min, there is no distinction in

how they are represented in event sequential data.

Investigators have addressed this problem by inserting

codes in the stream to denote that a duration-meaningful

behavior continues to occur. In the case of Blount et al.

(1989) this issue was resolved by inserting a code that

represented ‘‘cry’’ in the coding log every three events

while cry was ongoing. In this way, the duration of cry

was roughly captured because cry was represented multi-

ple times in the coding log. Unfortunately, this approach

Event 1 2 3 4 5 6 7 8 9 10

CODE: 
Physician
Empathic
 Touch 

Physician
Empathic
 Touch 

Physician
Empathic
 Touch 

Physician
Reassures 

Physician
Reassures 

Physician
Reassures 

Physician
Reassures 

Child
Cry 

Child
Cry 

Child
Cry 

Time: 1:01 1:02 1:03 1:04 1:05 1:06 1:07 1:08 1:09 1:10 1:11 1:12 1:13

Physician
Reassures

1 0 0 0 0 0 0 1 0 0 1 1 0 

Physician
Empathic

 Touch
1 1 1 1 0 0 1 1 1 1 1 1 0 

Child Cry 0 0 1 1 1 1 1 0 1 1 1 1 1 

(a)

(b)

Figure 1. Data representations corresponding to (a) event sequential data coding. Data are represented as a single mutually exclusive and

exhaustive stream. No time information included. Note that two behaviors that begin simultaneously must be ordered, and ongoing behaviors

(empathic touch and cry) are inserted every three codes while ongoing. (b) Timed-event sequential data coding. Data are represented as three

mutually exclusive and exhaustive streams (0¼non-occurrence, 1¼occurrence). Note that physician reassurance is represented as a momentary

event code and physician empathic touch and child cry are represented as state codes.
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misses important information on timing of gaps between

behaviors and behavior discontinuation. This hypothetical

example also highlights another limitation of event sequen-

tial coding—the inability to represent co-occurring behav-

iors. In event sequential data coding, behaviors that

co-occur must be ordered so that they can be represented

as successive codes in the single stream. Usually some

decision rule is imposed to represent order (i.e., whichever

speaker is loudest gets coded first), but this distinction is

artificial and ordering depends on the acuity of transcri-

bers. For example, in Figure 1a it is not clear whether the

alternation of child cry and physician reassures (from event

5 to event 10) represents a true alternation between these

behaviors, or whether it is an attempt to represent the

ongoing co-occurrence of child cry and physician

reassurance.

Analysis of Event Sequential Data

Lag sequential analysis is the specific sequential technique

that is appropriate for event sequential data. Using this

type of data, lag sequential methods ask whether the pres-

ence of one code (often termed the ‘‘given’’ code) increases

the probability that another code (often termed the

‘‘target’’ code) will occur. The term lag denotes where in

the sequence the given and target codes occur. For exam-

ple, Lag 1 is indicative of analyses examining the ‘‘given’’

code followed by the ‘‘target’’ code as the next event in the

stream. In the case of the example in Figure 1, an event

sequential question at Lag 1 would be ‘‘Does physicians’

use of reassurance (‘‘given’’ code) increase the probability

that a child will cry (‘‘target code’’) in the next behavior?’’

Lag 2 represents the target code as the second event after

the given code and so on. The underlying assumption in

these analyses is that behaviors have a relatively immediate

contingent relation. There are obvious drawbacks to this

assumption; theoretically we rarely expect the behavior of

one individual to have an immediate and uninterrupted

effect on the behavior of another individual. There are

also practical limitations to this type of analyses. If

researchers are interested in contingencies outside of

codes that immediately precede or follow each other

(e.g., codes at Lag 2 or greater), the complexity of these

analyses become overwhelming. Readers interested in a

recent and more detailed discussion of lag sequential anal-

yses are referred to Connor, Fletcher, and Salmon (2009).

It is notable that event-sequential data can be examined

using windows (i.e., whether a ‘‘target’’ code is likely to

occur within a window of five events from the ‘‘given’’

code), but this approach has not been widely used.

Timed-Event Sequential Data Coding

In contrast to simple event sequential coding, timed-event

sequential coding captures information about timing and

duration. When durations are important to an investiga-

tion, the onset and offset times of behavioral codes are

recorded (these are often called duration or state codes).

In other cases, durations may not be deemed as important

as examining when a particular behavior began or dura-

tions may not be meaningful for a particular behavior.

In these cases, onset times only are recorded (these are

often called momentary codes).

Whereas an event sequential approach requires coders

to force co-occurring behaviors into successive codes in

a stream (Figure 1a), timed-event sequential data preserves

information about co-occurrence by fitting codes into

separate streams. For example, one could have one

stream of codes about physician verbal reassurance. In

this stream the physician is coded as either reassuring

or not reassuring for each second in the observation.

The physician reassurance stream could be coded concur-

rently with a second stream of codes about physician

nonverbal behavior (e.g., coded as: empathically touching,

medically touching, or not touching at all for each sec-

ond in the observation) and a third stream about child

crying (e.g., coded as either crying or not crying for each

second in the observation). In this way, timed-event

sequential data more accurately captures behaviors that

naturally co-occur. Figure 1b is a code-time grid

(Bakeman, 2009) representation of the timed-event

coding of the same hypothetical data that was shown in

Figure 1a. Coding using a timed-event approach has the

disadvantage of being more difficult to collect by hand, but

computer programs have been developed to facilitate this

task (e.g., Noldus’ The Observer XT, Mangold

International’s INTERACT). Coding behaviors into sepa-

rate streams has the added benefit of allowing codes in

different streams to be coded at a different time by a dif-

ferent coder.

Analysis of Timed-Event Sequential Data

Two time-relevant sequential techniques are appropriate

for timed-event coded data. The first technique is similar

to the event lag-sequential technique, but rather than

asking questions about what occurs in the next behavior,

time lag-sequential analysis asks about what occurs in the

next second (if Lag 1 analysis is used). Using the same

example question from procedural interactions, a time

lag-sequential question would ask, ‘‘Does the occurrence

Time-Window Sequential Analysis 1063



of adult reassurance increase the probability that a

child will start to cry in the next second?’’ For obvious

reasons, this type of analysis is limited. Rarely do we

expect contingencies to be played out in such a specific

time frame.

The second time relevant technique, time-window

sequential analysis, allows for more flexibility in underlying

assumptions about contingencies (Bakeman, 2004;

Bakeman, Deckner, & Quera, 2005; Yoder & Tapp,

2004). Time-window sequential analyses asks whether

the presence of a particular behavior (i.e., a ‘‘given’’

code) increases the probability that another behavior

(i.e., a ‘‘target’’ code) will occur within a specified temporal

window. Using this technique, theoretically or empirically

relevant time windows (e.g., within 2 s) can be set for

analysis, thus setting the stage for research questions

such as ‘‘Does the occurrence of adult reassurance increase

the probability that a child will start to cry within a window

of 3 s?’’ or ‘‘Does the provision of a direct command

increase the probability that a child will comply with a

request within a window of 5 s?’’.

We will not review each of the sequential methods

described above in full detail, but instead will focus on

time-window sequential analysis. It is our assertion that

coding data using timed-event sequences and the corre-

sponding use of time-window sequential analysis is a

method that is relevant to multiple areas of pediatric psy-

chology, but has not been widely used in this area. This

type of data collection and analysis offers the most flexi-

bility of the sequential analytic techniques and uses a data

representation format that best captures how interactions

unfold over time (i.e., has the most ecological validity).

Readers interested in other types of sequential analytic

strategies (traditional and multilevel approaches) are

encouraged to read Bakeman and Gottman (1997),

Gottman and Roy (1990), Howe, Dagne, and Brown

(2005) and Stoolmiller and Synder (2006).

We make two assumptions before we continue fur-

ther. First, we assume that the investigator using

time-window sequential analysis is interested in exploring

patterns of interactions among individuals (or within an

individual) over time. Second, we assume that the investi-

gator has familiarity with observational coding systems

especially the importance of and methods for assessing

interrater reliability. For in-depth coverage of these

topics, the interested reader is referred to Bakeman and

Gottman (1997; see also Bakeman, Quera, & Gnisci,

2009).

Time-Window Sequential Analysis:
Perioperative Interactions as an Example

To demonstrate time-window analysis, we will use an

example of data from the Behavioral Interaction-

Perioperative Study (BIPS; reference blinded for review).

BIPS is a large-scale observational study examining interac-

tions among children, parents, and healthcare providers in

the perioperative setting. Video recordings of anesthesia

induction were collected from 292 children undergoing

anesthesia induction by mask for outpatient elective sur-

geries. Behavior was coded using a version of the

Perioperative Child–Adult Medical Procedure Interaction

Scale (Caldwell-Andrews, Blount, Mayes, Kain, 2005)

revised to facilitate timed-event coding. The coding

scheme was applied using The Observer XT (Noldus Inc,

The Netherlands) software. Data were exported from The

Observer XT to text files, converted into SDIS-formatted

data files (Bakeman & Quera, 2008), and compiled for

analysis using the sequential analysis program, GSEQ

Version 5.0 (Bakeman & Quera, 2009).

For the purposes of this example, two codes from the

R-PCAMPIS will be used: (a) Medical reinterpretation by

the anesthesiologist (reinterpreting medical equipment and

procedures as non-threatening or medical play; for exam-

ple: ‘‘Look at the mountains’’ referring to the anesthesia

machine) and (b) Medical play by the child (verbal or

nonverbal behavior indicating that the child is engaged in

play with medical equipment; for example: pointing to the

‘‘mountains’’ on the monitor). In line with previous coding

systems of patient-provider interactions (e.g., Roter

Analysis Interaction Scale; Roter & Larson, 2002), these

behaviors were treated as ‘‘momentary’’ event codes, that

is only their onset times and not their offset times were

recorded (Bakeman & Gottman, 1997). Codes were

assigned to the smallest unit of speech that conveyed a

complete thought and multiple thoughts in a row were

coded as separate instances of the code. For example,

‘‘look at the mountains. . .here, look at this’’ was coded

as two onsets of reinterpretation in close temporal

succession.

We will not provide a detailed review of the literature

on this topic, but do note that the relation between adult

behavior and children’s coping is not a new query in the

pediatric procedural pain literature. Using event-sequential

and correlational analyses, Blount and colleagues identified

a constellation of adult behaviors that were related to chil-

dren’s coping during medical procedures (Blount et al.,

1989). In the perioperative setting, Chorney et al. (2009)
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showed that a similar constellation of adult behaviors

(including medical reinterpretation) were correlated with

children’s coping (including medical play). As with any

correlational analysis, however, it is impossible to draw

causal conclusions from this data; we do not know

whether adults affected children or vice versa (or whether

some third variable accounts for these results). Time

window-sequential analysis can provide more insight

into this question. Although sequential analysis does

not permit causal conclusions, it does provide us more

information about the temporal contingency between

these behaviors. We can determine if reinterpretation is

likely to lead to play or if play is likely to lead to

reinterpretation.

The First Steps in Time-Window Sequential
Analysis: Asking Sequential Questions

As with other statistical methods, the utility of

time-window sequential analysis depends on the research-

er’s ability to formulate relevant research questions and

hypotheses. In the case of time-window analyses, research

questions must include elements of contingency and time.

In our example, we are interested in the relation between

anesthesiologists’ reinterpretation and children’s medical

play. The question ‘‘What is the relation between medical

reinterpretation and medical play?’’ is a correlational ques-

tion and not sufficiently detailed for examination with

sequential analyses. To reframe this correlational question

into one that is appropriate for sequential analysis, it is

necessary to increase the level of specificity and include

time information. For example, we could ask about the

temporal contingency between anesthesiologist reinterpre-

tation and children’s medical play: Are children more likely

to be engaged in medical play within 4 s of an anesthesiologist

medical reinterpretation than they are at other times? This

question suggests a potential play-cueing function of

medical reinterpretation—that children are responding

to anesthesiologists attempts to engage them in play.

Alternatively, we can ask about the contingency in the

opposite direction: Are anesthesiologists more likely to use

medical reinterpretation within 4 s after a child starts to

engage in medical play they are at other times? In this case

we ask about the reinterpretation-cuing function of play—

that anesthesiologists are responding to children. In both

cases, these questions include a hypothesized contingent

relation (e.g., medical reinterpretation as an antecedent

and medical play as a consequence) and a specified time

window (e.g., 4 s). It is notable that the length of the time

window is somewhat arbitrary (e.g., 3 s vs. 5 s). Although

there is some statistical guidance on this (Yoder & Tapp,

2004), the current recommendation is to use time window

durations that make sense given the nature of the data. The

rate at which behavior is occurring in the data, and in our

case the rate at which the participants are interacting, was

relevant in choosing a relatively short duration for this

window. In a paradigm in which the rate of coded behavior

is slower, longer window durations would make more

sense.

Preparing Data for Time-Window Sequential
Analysis: Recoding Data

To address our first research question—Are children more

likely to be engaged in medical play within 4 s of an anesthe-

siologist medical reinterpretation than they are at other

times?—we begin by defining an appropriate time

window. Figure 2 provides an illustrative example of

data. We define the second just after the anesthesiologist

reinterprets as ‘‘in’’ the reinterpretation window along with

the following 3 s. This 4-s window is illustrated in Figure 2.

In this segment of data, the anesthesiologist used reinter-

pretation twice, once at 1:03 and once at 1:10 and the

child showed play behavior three times at 1:05, 1:09,

and 1:10 (here observations are coded into 1-s time

intervals).

Time: 1:01 1:02 1:03 1:04 1:05 1:06 1:07 1:08 1:09 1:10 1:11 1:12 1:13

Physician
Reinterprets 0 0 1 0 0 0 0 0 0 1 0 0 0

Child
Plays 0 0 0 0 1 0 0 0 1 1 0 0 0 

Figure 2. Timed-event data demonstrating defined window for time-window sequential analysis. Shading indicates window following physician

reinterpreting. Bolded value indicates child play that occurs inside the physician reinterpret window. Italicized values indicate child play that

occurs outside the physician reinterpret window.

Time-Window Sequential Analysis 1065



Representing Sequential Data: The
contingency table

Once data are recoded into time windows, a contingency

table is constructed (Table I). This table tallies the occur-

rences and non-occurrences of our target code (i.e., child

medical play) and specified window for the other code (i.e.,

the 4 s after anesthesiologist medical reinterpretation). For

ease of presentation in this manuscript, cells (where the

rows and columns meet) in the contingency table are

labeled A, B, C, and D (as is conventional, e.g., see

Yoder and Tapp, 2004) where: cell A represents the

number of seconds in which the ‘‘target’’ code (i.e.,

began reinterpretation) occurred within the specified time

window, cell B represents the number of seconds within

the specified time window that did not also contain a

‘‘target’’ code, cell C represents the number of seconds

in which the ‘‘target’’ code occurred outside the specified

window, and cell D represents the number of seconds in

which neither the ‘‘target’’ code nor the window code

occurred. The contingency table for our first example,

‘‘Are children more likely to be engaged in medical play

within 4 s of an anesthesiologist medical reinterpretation

than they are at other times?’’ is shown in Table I. Note

that we provide data from a single participant (4940) as

an example throughout this section. The same process

would be followed for each subject and summary statistics

can be calculated for each subject. The use of summary

statistics will be discussed later.

Statistics for Time-Window Sequential
Analyses

Once contingency tables are generated, a range of statistics

can be calculated to describe the distribution of the data

and contingencies. Of particular interest is the odds ratio, a

measure of the relation between two variables. In the case

of time-window analysis, the odds ratio is an index of

sequential association that accounts for the base rates of

the antecedent given and consequent target (an important

issue highlighted later in this section). Odds ratios are

commonly used in epidemiology and biostatistics and

have intuitive appeal as they can be interpreted as directly

as how many times more (or less) likely one event is rela-

tive to another. Odds ratios have a lower bound of 0 and

an upper bound of infinity with 1.0 indicating no associ-

ation. In the context of sequential analysis, odds ratios

above 1 indicate that a target event is more like to occur

relative to a given event. An odds ratio less than 1 indicates

that the target event is less likely to occur relative to a given

event.

In our case, if the odds ratio is greater than 1, it means

that the odds of an onset of child’s medical play during the

4 s after anesthesiologist medical reinterpretation are

greater than the odds of an onset occurring outside the

window. The formula for the odds ratio is: OR¼ (A/B)/

(C/D), which is definitional, or (A�D)/(B�C), which

may be easier to compute; where A, B, C, and D refer to

the cells in the contingency table described above (Table I;

Durlak, 2009). Although the Odds Ratio is, in fact, itself an

index of effect size, it can be algebraically transformed into

another index of effect size, Yule’s Q, a statistic that ranges

from –1 toþ 1, like the familiar Pearson product–moment

correlation. The formula for Yule’s Q is (AD – BC)/

(ADþ BC) or (OR – 1)/(ORþ 1). In this example, although

only 36.4% of medical plays occurred within the 4 s after

anesthesiologist reinterprets, the odds of a medical play

onset occurring within this window were 3.94 times

greater than at other times (i.e., OR¼ 3.94, Yule’s

Q¼ .60).

This result seems counter intuitive. How can a child

be more likely to play in this window when the majority of

their play is outside this window? The answer is related to

base rates; the more common two behaviors are, the more

likely it is that they will follow each other by chance.

Alternatively, the less frequent behaviors are the less

common it will be for them to occur in close temporal

proximity. In our data, given that there are relatively few

occurrences of reinterpretation, when medical play occurs

within these few opportunities, it is significant. Another

way to think about this is by examining how often we

would expect these behaviors to co-occur given their

base-rates, and comparing this to what was observed in

the data. The formula for calculating expected values

is the standard one used for computing chi-square

Table I. Observed and Expected Values Contingency Table: Target

Behavior (Child Medical Play) and given Window (4 s Following

Anesthesiologist Reinterpretation)

Medical play No medical play Total

Inside reinterpretation window: 4 (A) 59 (B) 63

Expected value: 1.45 61.55

Outside reinterpretation window: 7 (C) 407 (D) 414

Expected value: 9.55 404.45

Total 11 466 477

Note: Odds ratio¼ (AU B)/(CUD)¼ (A�D)/(B�C)¼ 3.94; Yules

Q¼ (AD – BC)/(ADþBC)¼ .062.
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(Bakeman & Gottman, 1997). Per this formula, the

expected values are also provided in Table I.

As shown in Table I, if there was no relation between

medical play and medical reinterpretation, we would

expect to see 1.45 episodes of play within the window

after reinterpretation. In our observed data, we see 4 play

onsets in this window. Although these values (4 vs. 1.45)

appear to be different, just as in traditional statistics, we

are required to test the probability that this difference

occurred simply by chance (i.e., for statistical significance).

The z-test (or adjusted residual as it is termed in the

log-linear literature; Haberman, 1978) will be familiar to

many readers as a test of the difference between observed

and expected values. As in traditional statistics, in the case

of sequential analysis, the z-test is computed by dividing

the difference between the observed and expected values

by the standard deviation of this difference (Bakeman &

Gottman, 1997; Yoder & Tapp, 2004). The standard devi-

ation of the difference is a function of the expected sequen-

tial frequency and the simple probabilities of both

behaviors (for exact formula, see Bakeman & Gottman,

1997, or Yoder & Tapp, 2004). In our case, the z-test of

medical play beginning within the window of reinterpreta-

tion starts is 2.29, above the cutoff of 1.96 for a statistically

significant finding with a p-value set at .05.

Making Sense of Sequential Results

So far, we have transformed a correlational question—

What is the relation between anesthesiologist reinterpreta-

tion and child medical play?—into a sequential question—

Are children more likely to be engaged in medical play within

4 s of an anesthesiologist medical reinterpretation than they

are at other times? However, one sequential question may

not provide the entire picture of the temporal relation

between two behaviors. In our example above, we found

that children were more likely (four times more likely in

fact) to engage in medical play just following medical rein-

terpretation from an anesthesiologist than at any other

time. Based solely on this result, we would be likely to

conclude that anesthesiologist reinterpretation was serving

a ‘‘play-cuing’’ function; but what about the other direc-

tion? As we discussed earlier, one way to address this ques-

tion is by looking at reinterpretation following medical

play. The approach is the same as that just described. To

address our second research question—Are anesthesiolo-

gists more likely to use medical reinterpretation within 4 s

after a child starts to engage in medical play they are at

other times?—we define a window as the 4 s following a

child medical play. The frequency counts (observed and

expected) for the same example participant used above can

be found in Table II. In Table II, the odds ratio is 2.36.

Thus, this anesthesiologist is about twice as likely to rein-

terpret this child just after a child medically plays than at

any other time. The Yule’s Q is 0.40. The expected value

for reinterpretation in the window just after medical play is

1.5, which does not significantly differ from the observed

value of 3, z-score¼ 1.32, p > .05.

The results of time-window sequential analysis from

this sample participant better explicate the nature of the

relation between the anesthesiologist and the child in this

interaction. This child is almost four times more likely to

engage in medical play following the anesthesiologist’s

attempt to engage (via reinterpretation) them compared

to any other time. The adjusted residual of this comparison

was significant, suggesting that this contingency is statisti-

cally meaningful. In contrast, this anesthesiologist is only

two times more likely to attempt to engage this child fol-

lowing the child’s use of medical play. This comparison

was not statistically significant. Whereas correlational data

would indicate only that these two behaviors are related,

more detailed sequential analysis suggests that the anes-

thesiologist is driving this interaction. In this one case,

although both were positive, the effect was stronger

for the anesthesiologist-to-child than for the child-to-

anesthesiologist effect.

So far we have shown how to conduct time-window

sequential analyses for one case or participant. This is

useful for single subject research studies, but these analy-

ses are also useful in studies with more than one partici-

pant. Primarily, as we discuss in the next section, Yule’s Qs

can serve as outcome scores and be analyzed with standard

statistical techniques. We can also calculate the mean and

standard deviation of Yule’s Qs across participants and use

these values descriptively. In addition, if we have two

Table II. Observed Values Contingency Table: Target Behavior

(Anesthesiologist Reinterpret) and given Window (4 s Following Child

Medical Play)

Reinterpret No reinterpret Total

Inside medical play window: 3 48 51

Expected value 1.5 49.5

Outside medical play window: 11 415 426

Expected value 12.5 413.5

Total 14 463 477

Note: Odds ratio¼ (A/B)/(C/D)¼ (A�D)/(B�C)¼ 2.36; Yules

Q¼ (AD – BC)/(ADþBC)¼ .040.
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groups and want to know simply if they differ, we could

use a binomial or sign test. For example, if we had 30 cases

and 21 or more of them showed a particular pattern (i.e.,

children more likely to engage following a reinterpretation

than at any other time), we would say the deviation from

the expected 15–15 split was significant, p < .05, per

two-tailed sign test (Bakeman & Robinson, 2005).

Integrating Sequential Analyses with Other
Statistical Methods

Now that we have presented an overview, we wish to note

that an additional benefit of time window sequential ana-

lysis is that it can be integrated into other statistical

approaches (e.g., correlation and regression, analysis of

variance, structural equation modeling, latent growth

curves). We may be interested in the relations between

sequential results and traditional paper and pencil mea-

sures or demographic data and so ask, for example, ‘‘Is a

child more likely to engage in medical play following reinter-

pretation from Anesthesiologist A or B?’’ or ‘‘Is the child’s age

related to how likely they are to engage in medical play fol-

lowing anesthesiologists reinterpretation?’’ Conceptually,

these questions ask ‘‘Does the strength of the specified

association (i.e., effect size) between a reinterpretation

and medical play vary according to the child’s age or anes-

thesiologist identity.’’ Note that these questions are spe-

cific to temporal relations; we ask whether a boy is more

likely to engage in medical play following anesthesiologists’

reinterpretation. This is a more specific question than

simply asking whether a boy is more likely to engage in

medical play than a girl.

In order to answer these particular questions the pedi-

atric researcher can use the values of Yules’s Q for each

participant as dependent variables in subsequent analyses.

The use of a program such as GSEQ, which computes

summary contingency scores like Yule’s Q for each partic-

ipant, greatly facilitates this process. Note that Yule Q’s

and odds ratios can be calculated only for participants

who have occurrences of both the given and the target

behaviors; otherwise division by 0 would occur, resulting

in an undefined (missing) value. In terms of the examples

presented above, to determine if children are more likely to

respond to reinterpretation with medical play for anesthesiol-

ogist A and B, we compare the mean Yule’s Q for

Anesthesiologist A to B using a simple t-test. In our data

set we find that the mean Yule’s Q for Anesthesiologist A is

0.13 (n¼ 15) and the mean Yule’s Q for Anesthesiologist B

is 0.47 (n¼ 26) with t¼ 2.25, p < .05, d¼ .72 Thus, it

appears that Anesthesiologist B is more effective at engag-

ing children than Anesthesiologist A. To answer our

second question, ‘‘Is the child’s age related to how likely

they are to engage in medical play following anesthesiologists

reinterpretation?’’ the bivarate correlation between the indi-

vidually calculated Yule’s Q and child age was determined.

In our data set this correlation is small, r(104)¼ .108,

p > .05, and not statistically significant. These are just

two of an infinite number of ways to integrate sequential

analyses with other statistical methods. The key is to treat a

contingency index derived from sequential analysis as a

score like any other—one that can be analyzed along

with scores derived from other sources, using any of a

variety of familiar statistical procedures. One caveat: as

with any other kind of score analyzed with a group

design, having a sufficient sample size to detect as statisti-

cally significant effects of a size you think important (i.e.,

power analysis) always needs to be considered.

Conclusions

Sequential techniques allow researchers to examine ques-

tions about the contingency between behaviors, which is

not afforded by other statistical techniques. In the case of

the example provided here, attending to temporal contin-

gency provides important information about the nature of

the relation between the behaviors of interest. This asset

not withstanding, results from sequential analysis can be

complex and sometimes challenging to interpret. Because

the level of specificity in the analyses is so great, so too

must be the level of specificity in the conclusions. This fact

is often at odds with the desire to offer direct, unqualified

conclusions from one’s work (e.g., ‘‘adult behavior pro-

motes children’s coping’’). Rather, the conclusions that

can be drawn from a set of sequential analyses provide a

more detailed view of the transactional relationship among

behaviors of interest. It is also notable that sequential ana-

lysis is subject to the same limitations and caution in inter-

pretation as correlational analyses; we can not rule out the

possibility that a third variable is responsible for the

demonstrated relation. Despite these limitations, we

believe that the increased accuracy from fine-grained level

of analysis and specificity of the results can lead to very

precise intervention strategies.

Although the example provided here is specific to chil-

dren’s coping during medical procedures, it is important to

note that sequential analysis has utility across pediatric
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psychology domains. Researchers who are interested in

interactions amoung parents and children, physicians

and patients, or teachers and students will find this tech-

nique useful. Of particular value is the fact that sequential

analysis can better contextualize correlational findings.

Sequential approaches can query which participant in the

interaction is the leader and which is the follower (i.e.,

which participant is more likely to cue the other). For

example, in an interaction between and anxious child

and their parent, is a request for support from the child

more likely to prompt reassurance from their parent, or is

reassurance more likely to prompt a child’s request for

support? Sequential approaches can also determine the

efficacy of a specific behavior. For example, is a child

more likely to eat a non-preferred food following a direct

command or an indirect command? In this way, we gather

more information about this interaction than is provided

with simple correlation. It is our hope that this article has

helped to demystify the process of conducting

time-windowed sequential analyses and that we have con-

vinced some readers to incorporate sequential techniques

into their own research.
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